Contribution of spike timing to the information transmitted by HVC neurons.
نویسندگان
چکیده
In many species, neurons with highly selective stimulus-response properties characterize higher order sensory areas and/or sensory motor areas of the CNS. In the songbird nuclei, the responses of HVC (used as a proper name) neurons during playback of the bird's own song (BOS) are probably one of the most striking examples of selectivity for natural stimuli. We examined here to what extent spike-timing carries information about natural and time-reversed versions of the BOS. From a heterogenous population of 107 HVC neurons recorded in long-day or short-day conditions, a standard indicator of stimulus preference based on spike-count (the d' index) indicates that a limited proportion of cells can be classified as selective for the BOS (20% with a |d'| > 1). In contrast, quantifying the information conveyed by spike trains with the metric-space of J.D. Victor & K.P Purpura [(1996) J. Neurophysiol., 76, 1310-1326] indicates that 62% of the cells display significant amounts of transmitted information, among which 77% are 'temporal cells'. 'Temporal cells' correspond to cells transmitting significant amounts of information when spike-timing is considered, whereas no information, or lower amounts of transmitted information, is obtained when only spike-count is considered. Computing a correlation index between spike trains [S. Schreiber et al. (2003) Neurocomputing, 52-54,925-931] revealed that spike-timing reliability is higher for the forward than for the reverse BOS, whatever the day length and the cell type are. Cells classified as selective in terms of spike-counts (d' index) had greater amounts of transmitted information, but cells classified as non-selective (d' < 0.5) can also transmit significant amounts of information. Thus, information theory methods demonstrate that a much larger proportion of neurons than expected based on spike-count only participate in the discrimination between stimuli.
منابع مشابه
Spike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملCortical representation of auditory space: information-bearing features of spike patterns.
Previous studies have demonstrated that the spike patterns of cortical neurons vary systematically as a function of sound-source location such that the response of a single neuron can signal the location of a sound source throughout 360 degrees of azimuth. The present study examined specific features of spike patterns that might transmit information related to sound-source location. Analysis wa...
متن کاملRole of STDP in regulation of neural timing networks in human: a simulation study
Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...
متن کاملRole of STDP in regulation of neural timing networks in human: a simulation study
Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The European journal of neuroscience
دوره 24 4 شماره
صفحات -
تاریخ انتشار 2006